
Nuclear Physics B (Pfoc. Suppl.) 34 (1994) 799-801 

North-Holland 
PROCEEDINGS 
SUPPLEMENTS 

The Method of Recursive Counting: Can One Go Further? * 

M. Creutz a, I. t torvath a,b and R. Mendris c 

aBrookhaven National Laboratory, Upton, NY 11973, USA 

b Physics Department, University of Rochester, Rochester, NY 14627, USA 

c Department of Mathematics, Faculty of Electrical Engineering, 
Slovak Technical University, 812 19 Bratislava, Slovakia 

After a short review of the Method of Recursive Counting we introduce a general algebraic description of 
recursive lattice building. This provides a rigorous framework for discussion of method's limitations. 

Recently there has been increased interest 
within the lattice community in high and low 
temperature series expansions. For discrete sys- 
tems, very high orders are now available due to 
several developments including: 1) The Modified 
Shadow Method [1] is a computerized diagram- 
matic technique. It seems to be the most efficient 
way to calculate low temperature expansions in 
Potts-like models. 2) The Finite Lattice Method 
[2] relies on extracting the series expansion from 
the exact partition functions of small systems. 3) 
The Method of Recursive Counting (MRC) [3-5] 
is quite similar in spirit, but different in technical 
realization. Both methods are roughly equal in 
strength for Potts-like models and are probably 
the most powerful strategies for obtaining high 
temperature expansions for these systems. 

In this presentation we pinpoint some of the es- 
sential ingredients in MRC. Building upon that,  
we introduce an algebraic formalism, which gives 
a rigorous means to discuss some of the limita- 
tions of MRC. We feel that  our approach could 
eventually be useful in other contexts and might 
be interesting in its own right. 

The heart of the MRC is Binder's proposal 
[6] for calculating the partition function of a fi- 
nite system recursively. Consider an infinite 2- 
dimensionM hypercubic grid without any vari- 
ables on it. We build the system by adding fi- 
nite straight lines (transverse layers) of variables 
on top of each other. The last layer put into the 

*Talk presented by Ivan Horvath.  

bare grid is called the "exposed layer" and the 
ones below it are referred to as "covered layers". 

Let p(E, I) denote the number of states of our 
finite system, corresponding to given energy E 
and a given configuration I of the exposed layer. 
When adding a new layer, these numbers, usually 
called "counts", change in the obvious way 

p(E, I) p'(E,I) " ~_,p(E-  A(I,I'),I '). (1) 

Here A(I,  I ' )  is the change in the energy when 
configuration I ~ is covered by the configuration 
I. Assuming that  the energy of the system can 
only take discrete values and it is possible to keep 
the counts in the computer memory, we can add 
as many layers as we wish and in the end compute 
the partition function for the finite system we just 
built, namely 

Z = ~ P(E)e -aE, (2) 
E 

where P(E) = Ezp(E,I) .  Note that  e -z  is a 
low temperature variable and that  the main ad- 
vantage of this recursive procedure is that  it saves 
one dimension in the problem. 

With periodic boundary conditions in the 
transverse direction [3], adding new layers doesn't 
change the boundaries of the system - they are 
only at the top and the bottom. Therefore, if 
one subtracts the results for different volumes, fi- 
nite size effects coming from excitations smaller 
than the length of the lattice cancel themselves 
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out except for those that  feel the periodicity in 
the transverse direction. Thus, such a subtrac- 
tion represents a pleasantly simple procedure of 
extracting the low temperature  expansion. If the 
system is substantially long, then the order of this 
expansion is completely specified by the "size" of 
the lattice in the transverse periodic subspace. 

A powerful technical realization of the above 
strategy uses so called helical lattices [4]. The 
essential point lies in enumerating the variables 
as one puts them into the grid one after another, 
one at the time. Therefore, one can think of vari- 
ables as lying on a chain. A helical lattice in two 
dimensions is specified by two positive integers 
{hz, hy} representing the distance from a given 
variable on the chain to its x, y neighbors. Using 
the convention that  hy > h~, the exposed layer is 
formed by the last hy variables. 

This formalism generates periodic boundary 
conditions in transverse direction automatically. 
To get from a given variable to its image, we 
must jump n~ times in x-direction and ny times 
in y-direction and end up at the same place on 
the chain, i.e. nxhx + n~thy = 0. The vector 
ff = (n , ,  ny) characterizes the periodicity of the 
lattice. The order of the series expansion one 
can get from such a lattice is proportional to 
L = ]n,[ + ]nu[. Clearly, we try to get the largest 
possible L with the smallest number of variables 
in the exposed layer. It is easy to be optimal 
on the space of helical lattices: For fixed hy, the 
best choice is h ,  = hu - 1 with L = 2h u - 1. Note 
that  this is twice as much as if we used a simple 
periodic lattice [5]. 

This is a very powerful result, but  it makes 
one wonder: Are there even smarter lattices one 
could use for recursive counting in two dimen- 
sions? Turning to that  question, we need to clar- 
ify the notion of the lattice, which is a bit con- 
fusing: We always mean the hypercubic grid and 
and yet talk about different "lattices". What  the 
word lattice mainly reflects here is the relation of 
the set of variables to the grid, not the underlying 
geometric structure. More precisely, to specify a 
lattice means to specify a mapping from Z × Z 
to Z, where Z × Z represents the grid and Z the 
set of variables. Note that  since the integers form 
an ordered set, with a "lattice" in hand we not 

only know what the resulting system looks like, 
we also have a prescription to build it. In other 
words, we know in what order and where to put 
the variables on the grid. As we learned from 
Binder, the right choice of the building prescrip- 
tion can make a big difference here. 

Inspired by helical lattices, we introduce the 
functions z(n) ,  y(n) representing the relative po- 
sitions in Z of +x,  +y  neighbors of variable n with 
respect to itself. Therefore, p(n) -= n + z (n)  
is the +x  neighbor of variable n and q(n) =_ 
n + y(n) its +y  neighbor. Clearly, not all the 
pairs {z(n),  y(n)} represent a lattice, and if such 
a description is supposed to be of any practical 
use, we should be able to tell when this is the 
case. In other words we have to define the set 
of lattices relying on the algebraic aspects only. 
This can be done. 

Consider an elementary square on our grid and 
the variable n, residing in its lower left corner. 
From there to get to the diagonally opposite one, 
we can either go first up and then right, reaching 
the variable p(q(n)) or first right and then up, 
ending up at q(p(n)). To avoid contradiction on 
which variable actually resides there, commuting 
mappings p(n), q(n) are required: 

p(q(n)) = q(p(n)). (3) 

While the unique existence of +z ,  + y  neighbors 
of a variable n is guaranteed by the very exis- 
tence of the functions z(n),  y(n), this is not nec- 
essarily the case for the the - z , - y  neighbors. 
This forces us to restrict ourselves to the invert- 
ible functions p(n) ,q(n) .  In summary therefore, 
the pair {z(n),  y(n)} represents a lattice if and 
only if the corresponding p(n), q(n) are one to one 
commuting mappings of some B C Z on itself. 

For example, a very broad class of algebraic 
lattices is described by functions: y(n) = K,  
z (n  + K)  = z(n) ,  where K is an integer constant. 
Indeed, in this periodic case the commutat ion rule 
(3) is satisfied and we just restrict ourselves to in- 
jective p(n), q(n). 

For the purposes of the recursive procedure, we 
have to identify the "exposed layer". Quite gen- 
erally, the variable belongs to the exposed layer, 
if some of their neighbours are not yet in place 
because the knowledge of such a variable is nec- 
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essary to continue the recursion. In practice, we 
are restricted by computer memory and therefore 
to some finite number of variables in the exposed 
layer. In the algebraic language, the functions 
x(n) ,  y(n)  are bounded by some positive constant 
i i.e. Ix(n)h ly(n)l ~_ i ,  Vn. Indeed, if that  is 
the case and n is the last variable we put on the 
grid, then all of the variables up to n - M have 
their neighbors certainly in place, leaving at most 
M of them in the exposed layer. 

Now going back to the question of optimal pre- 
scription for extracting the series expansion re- 
cursively, we can state it in our algebraic lan- 
guage: Consider the set of all algebraic lat- 
tices { { x ( n ) , y ( n ) } ) M ,  for which x ( n ) , y ( n )  are 
bounded by M. It can be shown that  for each 
lattice there is a unique vector ff _-- (n~, ny), rep- 
resenting the minimal periodicity of the lattice. 
The length L of this vector in the Manhat tan met- 
ric defines a functional on the above set. Find the 
lattice, for which the maximum of this functional 
is realized. 

T h e o r e m :  The m a x i m u m  L,~a~ = 2 M  - 1 
is realized on the helical lattice {x(n) = M -  
1 ,y (n )  = M } .  

Proof." We give only a short sketch of the proof, 
relying on the lemma, which we won't  prove. 
Having an arbitrary lattice {x(n), y(n)}, we can 
divide the set of variables B into equivalence 
classes, each class consisting of variables, lying 
on the same line in x-direction. 

L e m m a :  I f  x (n )  is bounded by M ,  there are at 
most  M such equivalence classes. The m a x i m u m  
is achieved i f  and only i f  x (n )  = const  = M .  

The first part of the lemma tells us that for 
each lattice in our set, there are at most M dif- 
ferent lines of x-ne ighbor ing  variables. There- 
fore, the lines repeat themselves on the grid and 
the repetition occurs after at most M steps in 
the y-di rect ion.  In other words, to get from a 
given variable to its image, one has to take at 
most M steps in y-di rect ion.  Now, exchanging 
the role of z and y, we can say the same thing 
about hopping in z -d i r ec t ion  and set the bound: 
L , ~  _< 2M. The proof can now easily be com- 
pleted, using the second part  of the lemma. Put- 
ing x (n )  = y(n)  = M we obtain the trivial case 
with periodicity ~ = ( - 1 ,  1) and the above bound 

can not be achieved. Therefore, the maximum is 
Lma~ = 2 M - l ,  because this value can be realized 
on the helical lattice {x(n) = M -  1, y(n)  = M } .  
Q.E.D. 

What  we found is kind of a NO-GO theorem, 
because it asserts that  what was already used is 
the best. There is a little hole though. Our al- 
gebraic description captures all the lattices for 
which the neighborhood of a given variable looks 
the same anywhere in the grid, including the ori- 
entation. In other words if a variable has an 
image somewhere, then there are also its image 
neighbors (as it should if we consider the local 
actions), with the same relative position. There 
do exist however also lattices for which the orien- 
tation of neighbors is not preserved. On the other 
hand, there are strong indications that  the space 
of these lattices is quite small and that  they are 
much less effective than the algebraic lattices. 

The extension of our formalism to higher di- 
mensions is straightforward. In those cases how- 
ever, the MRC relies heavily on the cancelation 
tricks between different lattices [5] and the power 
of single lattice is not the only relevance there. 
On the other hand our algebraic approach en- 
larges the set of lattices with the potential of can- 
celling the errors and could therefore improve the 
efficiency of the method. This possibility has not 
been seriously investigated. 

Lastly, although the result of this algebraic ex- 
ercise is a NO-GO theorem, the fact that  we were 
able to put this geometric problem in purely alge- 
braic terms is interesting in itself. Our formalism 
might be useful in "algorithmization" of various 
tasks concerning finite lattices. 
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